Extreme Temperature and High Current Testing Challenges of Automotive Devices

Praveen kumar Ramamoorthy, Murad Hudda Infineon Technologies

Dan Maccoux, Muhamad Izzat Roslee JF Microtechnology

2015 BiTS Workshop March 15 - 18, 2015

Contents

- Introduction
- Production performance of VQFN socket
- gR&R plot
- Thermal simulation of the VQFN socket
- Redesign & Major changes
- Design rev.1
- Design rev.2
- Design rev.3
- Production performance
- Conclusion

Introduction

- Modern automobiles are equipped with hundreds of electronic devices to perform various functions such as ignition timing, air/fuel ratio control, air bag control etc
- Stringent quality requirements of these devices must be met before shipping to customers as they are concerned with safety of the passengers

Contd...

- Final testing of the devices are performed at extreme temperatures to cater the quality requirements
- This work shares the design & development of a new VQFN socket for production operating at a temperature range of -60°C to 170°C with performance of +2°C deviation from the setpoint temperature

Production performance of VQFN socket

- Measurement capability analysis (MCA) was performed on the new VQFN socket at production and gR&R study was performed on the tester data. gR&R acceptance criteria is <=30%
- Electrical data of the new socket was found to be better than the existing sockets
- For temperature check test gR&R was observed to be >30%
- As per tester data a deviation of up to ±10°C from nominal setpoint temperature was noted
- Root cause analysis performed in comparison with the existing sockets pointed out to air channel design of the new socket

gR&R plot

Thermal simulation of the VQFN socket

- Thermal simulation was performed on the VQFN socket tested at production
- Simulation results showed that the heat is not uniformly distributed across the package

Redesign & Major changes

- Air channels were redesigned and went through 3 revisions before concluding on the best design.
- In rev.1, provision was provided for channeling the flow into bottom of the device (inner channel) in addition to the top (outer channel)

Design rev.1

 Results were not promising as this design will have lesser heat transported through air across the package

Design rev.2

- In rev.2, airflow was focused onto the package
- However, the required setpoint temperature was not achievable with this model due to air on the top venting out to atmosphere

Design rev.3

- In rev.3, venting of air was prohibited by concealing the top portion of the channel
- Simulation results seemed to be positive

Production performance

- The redesigned rev.3 of the socket was fabricated, run through ~9k devices and analysed for gR&R
- Temperature deviation was observed to be within the acceptable range of <u>+</u>2°C

Conclusion

- Final testing of automotive devices are challenging due to stringent quality requirements
- VQFN socket developed exhibited improved electrical performance but failed for temperature
- Thermal simulation was used to redesign the air channel which went through 3 revisions before fabrication
- Thermal performance of the socket was within the acceptable range of +2°C

